Ego-Tutor: Multimodal Reasoning for Dexterous Mobile Robots

Mohamed Malek Abid!

Julie Terrassier'

Konstantin Lucny!  Dragos Chileban!

'ETH Ziirich

{moabid, jterrassier, klucny, dchileban}@ethz.ch

Supervisors: [sar Meijer, Jeffrey Delmerico, Oier Mees (Microsoft Research)

Abstract

Understanding how humans perceive and describe tasks
can help improve embodied reasoning models for robotic
manipulation. Existing policies such as Embodied Chain-
of-Thought (E-CoT) are mostly trained on robot-centric
datasets and lack exposure to real egocentric human
demonstrations. We present Ego-Tutor, a system that en-
hances Vision-Language-Action models by leveraging rich
multimodal signals from Meta Aria glasses to provide
human-aligned reasoning for robot learning. Crucially, we
develop and iterate upon a Mixed Reality application on
the Microsoft HoloLens for interactive inspection and mod-
ification of generated model reasoning, enabling on-the-
fly policy and data corrections. The iteration process in-
volved user studies and analysis, allowing us to evaluate
the usability and effectiveness of our mixed reality inter-
face for data annotation and policy improvement. Train-
ing code and our MR application are available at ht tps :
//github.com/julie-trrsr/ego-tutor.

1. Introduction

Vision-Language-Action (VLA) models have been an in-
creasingly popular area of research over the past couple
years; as the most promising approach for open-world
robotic manipulation, they enable robots to understand nat-
ural language instructions and execute corresponding ac-
tions by leveraging large-scale Vision-Language Model
(VLM) backbones to improve Out-of-Domain (OOD) gen-
eralization to tasks. Prior approaches have struggled with
this OOD generalization since the early days of robotics
and symbolic Al, where symbolic approaches struggled
with brittleness and representing complex environments.
Recent work on Embodied Chain-of-Thought (E-CoT) [9]
has shown that explicitly generating intermediate reasoning
steps improves both interpretability and task performance
compared to base VLAs. However, these models and their

associated intermediate reasonings are still predominantly
trained on robot-centric datasets captured from fixed exo-
centric video of robot arms with coupled trajectories, which
fundamentally differ from how humans perceive and reason
about manipulation tasks.

We present Ego-Tutor, a system that bridges this gap by
leveraging multimodal egocentric data from Meta Aria
glasses [7] to enhance VLA reasoning. Our pipeline makes
full use of all relevant data that the Meta Aria glasses pro-
vide: namely, synchronized RGB video, eye gaze tracking,
hand pose estimation, and spoken task narrations that we
collect during natural human demonstrations.

To enable human-in-the-loop refinement, we developed, it-
erated on, and presented a demo of our Mixed Reality ap-
plication on the Microsoft HoloLens, which allows users to
visualize model predictions directly in Augmented Reality
(AR) and provide corrections to detected objects, subtasks,
and all other aspects of generated reasonings. This creates
a feedback loop where human expertise can be injected to
improve the policy’s performance via augmented interme-
diate model reasonings in complex settings and tasks. Our
contributions include:

* A pipeline for collecting and processing egocentric multi-
modal demonstrations using Meta Aria glasses, extracting
synchronized gaze, hand tracking, and speech signals.

» Improvements to the existing reasoning generation (con-
sidering past/present frames as well as incorporating eye
gaze to augment reasonings).

* A HoloLens Mixed Reality application for interactive in-
spection and correction of model reasoning, enabling on-
the-fly data augmentation.

We evaluate our approach through training comparisons
showing improved convergence with our collected data and
improved reasoning generation for fine-tuning, as well as a
user study demonstrating the usability of our mixed reality
interface.
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2. Related Work

Vision-Language-Action Models. OpenVLA [5] intro-
duced an open-source VLA architecture combining a vision
encoder with a language model backbone for end-to-end
robotic control. Embodied Chain-of-Thought (E-CoT) [9]
extended this 7B parameter model by generating explicit
reasoning chains before action prediction, thus improving
interpretability and performance. Gemini Robotics 1.5 [?
] introduces a similar approach which they call a “Think-
ing VLA”, which also interleaves natural language reason-
ing with actions, and uses 2D pointing as an intermediate
representation for embodied reasoning. We were partially
inspired by this pointing, to utilize the human gaze data as a
similar signal to ground reasoning in what humans actually
look at during manipulation.

Egocentric Perception and Datasets. Meta’s Project
Aria [7] glasses are equipped with many sensors including
stereo RGB cameras, eye tracking, and IMUs. Large-scale
egocentric datasets like Ego4D [2] and Ego-Exo04D [3] have
advanced action recognition and video understanding, but
lack native 3D hand pose annotations, a limitation for learn-
ing dexterous manipulation. EgoDex [4] addresses this by
collecting 829 hours of egocentric video with paired hand
tracking using Apple Vision Pro, but no comparable dataset
exists for Aria glasses. Off-the-shelf hand detectors suf-
fer from poor accuracy on egocentric views due to heavy
occlusion and limited viewpoints, we were thus motivated
to collect our own Aria dataset with native hand tracking
from Aria MPS which could then be mapped to approxi-
mate gripper/end-effector positions and states more accu-
rately than an off-the-shelf solution.

Open-Vocabulary Object Detection. Grounding
DINO [6] enables zero-shot object detection from nat-
ural language descriptions by combining DINO’s self-
supervised features with grounded pre-training. We use
Grounding DINO to detect objects mentioned in spoken
task descriptions, then apply gaze-based classification to de-
termine object relevance.

3. Data Collection

We collected a custom dataset using Aria smart glasses,
comprising approximately 15 stationary scenes in which
a user interacted with everyday objects placed on a table.
The recorded activities involved simple manipulation ac-
tions such as picking up objects, placing them on top of
one another, and repositioning them in the scene. These
controlled yet natural interactions were designed to capture
multimodal signals relevant to embodied perception and ac-
tion understanding.

For data processing, we leveraged the Aria Machine Per-
ception Services (MPS) outputs, in particular the provided
hand pose estimates. The stereo RGB streams were first
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Figure 1. Visualization of Aria recording multi-modal data over-
lay.

undistorted and spatially aligned to ensure geometric con-
sistency across views. Multiple modalities were then fused
into a unified representation by integrating 3D gaze rays
and hand skeletons into each video frame. Gaze informa-
tion was projected into the image plane to enable intuitive
2D visualization, while hand skeletons were projected after
undistortion of the RGB images.

To further characterize hand—object interaction, we im-
plemented an algorithm to estimate hand rotation and com-
pute a grasping coefficient, defined as a continuous value
between 0 and 100 representing the degree of hand clo-
sure. In parallel, we applied the Whisper [8] speech-to-text
model to automatically transcribe the user’s verbal narration
of task execution, producing natural-language descriptions
aligned with the visual data.

All modalities were temporally synchronized and stored
in RLDS format. In addition, we developed visual inspec-
tion tools 2 that overlay gaze points, hand skeletons, and
textual task instructions onto the video frames, enabling ef-
ficient analysis and validation of the collected dataset.

4. Methodology

Improved E-CoT Reasoning Generation Pipeline. We
use gaze information to classify detected objects as either
primary objects (relevant to the immediate subtask), or con-
textual, providing explicit attention reasonings that are ab-
sent in standard E-CoT annotations. This approach was in-
spired by Gemini robotics ER[1], which adds ”pointing” as
a prediction in intermediate model reasonings. Humans nat-
urally attend to task-relevant objects through eye gaze, de-
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Figure 2. Screenshot of our HoloLens Application.

scribe their intentions through speech, and coordinate hand
movements with visual attention. We argue that incorporat-
ing these egocentric human demonstrations into reasonings
for training could provide stronger supervision for learning
which objects are relevant at each stage of a task, as well as
more human-aligned reasonings. Furthermore, apart from
updating the LLM used to the latest feasible/fast model
(Gemini 2.5 Flash), we also modify the reasoning gener-
ation strategy to provide the model with the past £ = 3 rea-
sonings as well as the first generated reasoning; this lever-
ages the longer context windows of the updated LLM model
and allows the reasonings to be more relevant with respect
to the overall task as well as maintain some brief causal
context when things go wrong due to an incorrect previous
reasoning step.

5. Mixed Reality Application
5.1. HoloLens

To support interactive inspection and correction of model
reasoning, we developed an immersive mixed-reality appli-
cation on Microsoft HoloLens. This enables users to see
E-CoT predictions directly in their environment and cor-
rect them in real-time, creating a human-in-the-loop feed-
back pipeline for on-the-fly data augmentation and policy
improvement. This tool provides an intuitive way to un-
derstand and refine embodied reasoning outputs, making it
easier to diagnose failures and inject human knowledge into
the learning process.

Reasoning visualization. The interface spatially over-
lays the model’s predicted reasoning output onto the real
environment. Detected objects are visualized as bounding
boxes anchored to their physical counterparts, each anno-
tated with the predicted object label. The generated reason-
ing chain, including the current task and subtasks, is dis-
played in a dedicated panel within the user’s field of view.
This combined visualization allows users to simultaneously
inspect what the model perceives and how it decomposes
the task, facilitating identification of perceptual and reason-
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Figure 3. Qualitative user study results.

ing errors.

Voice corrections. Users can interact with the system
through natural voice command to correct reasoning out-
puts. By selecting either a bounding box or the generated
reasoning chain panel, users can dictate corrections such as
object relabeling or subtask description refining. Correc-
tions are recorded and associated with the selected element,
enabling targeted feedback without requiring manual text
input or external annotation tools. This voice-based inter-
action supports fluid hands-free supervision in situ.

Live Feedback Loop. All recorded corrections are ag-
gregated and submitted explicitly by the user, after which
they are transmitted to the backend. These corrections are
fed back into the training pipeline to improve reasoning
annotations and refine perception-reasoning alignment, en-
abling iterative policy improvement through human-in-the-
loop data augmentation.

The HoloLens application provides a mechanism for
spatially grounded visualization and correction of embod-
ied reasoning output. It supports the efficient identification
of perception and reasoning errors and facilitates their in-
corporation into the training pipeline. This design improves
the interpretability and controllability of the embodied poli-
cies.

5.2. User Study

To evaluate the usability, clarity, and overall effectiveness of
the proposed system, we conducted a qualitative user study
with approximately 20 participants. The study was carried
out primarily during the course demo presentation, where a
diverse group of visitors interacted with the system at our
stand in the faculty hallway. Most participants had a tech-
nical background, including students and researchers, while
others had limited prior exposure to mixed reality systems.
During the evaluation, participants interacted with physical
objects placed on a table and explored the system’s predic-
tions and feedback mechanisms in a realistic, hands-on set-
ting.

Study design and questionnaire. Participants inter-
acted freely with the system and subsequently completed



a structured questionnaire consisting of Likert-scale (1-5)
and open-ended questions. The quantitative evaluation cov-
ered the following aspects:

1. Usability and ease of use, including intuitiveness of the
MR interface, learnability, and confidence during inter-
action.

2. Clarity of reasoning visualization, assessing the compre-
hensibility of the displayed reasoning, spatial placement
of overlays, and comparison to traditional 2D interfaces.

3. Feedback and correction mechanisms, focusing on the
ease and effectiveness of providing voice-based correc-
tions.

4. Cognitive load and comfort, evaluating information den-
sity, distraction, mental effort, and physical comfort.

5. Trust and perceived usefulness, measuring user trust in
the model, perceived involvement, and applicability to
real-world robot supervision.

Additional questions addressed overall satisfaction, prefer-
ence for MR-based feedback over screen-based interfaces,
and potential application scenarios.

Quantitative results. The aggregated results of the
Likert-scale questions are shown in Fig 3. Overall, par-
ticipants reported consistently high scores across all cate-
gories, with mean values ranging from 3.71 to 4.35 out of
5. Cognitive Load and Comfort received the highest score
(4.35), indicating that the amount of information presented
in MR was generally perceived as manageable and non-
overwhelming. Clarity of Reasoning Visualization (4.25)
and Usability and Ease of Use (4.14) were also rated pos-
itively, suggesting that spatialized reasoning and bound-
ing box visualization effectively supported model under-
standing. Slightly lower scores for Feedback and Correc-
tion Mechanisms (3.71) and Trust and Perceived Usefulness
(3.86) highlighted opportunities for improving interaction
feedback and transparency.

Qualitative feedback and system improvements.
Open-ended responses provided valuable insights into user
expectations and system limitations. Several participants
indicated the need for an integrated tutorial to explain in-
teraction steps without requiring external guidance. Based
on this feedback, we implemented an in-app guided tutorial
that introduces system functionality in a step-by-step man-
ner. Additional feedback concerned the readability of rea-
soning text, particularly regarding color contrast and font
size, which was addressed by refining the visual design of
text elements. Further, we have changed the positioning
of buttons connected to the feedback loop for more natural
interaction. In the course of this we have added a menu,
appearing next to the user’s wrist, which contains general
functionality of the application. Finally, users requested
clearer feedback regarding when voice input was active.
Consequently, we added a green microphone indicator to
explicitly signal when the system is listening for verbal cor-

rections. Overall, the feedback confirms the potential of
MR-based reasoning visualization while guiding concrete
improvements to the interface.

In conclusion, the user study demonstrates that the pro-
posed mixed reality interface effectively supports intuitive
interaction, clear reasoning visualization, and user-driven
model correction. The consistently high quantitative scores
and constructive qualitative feedback indicate that partici-
pants found the system both usable and informative, while
also highlighting concrete areas for improvement. The im-
plemented refinements based on user feedback further sug-
gest that such MR-based interfaces have strong potential to
enhance transparency, trust, and human-in-the-loop learn-
ing in real-world robotic and embodied Al applications.

6. Experiments

We compare models fine-tuned on standard E-CoT data
against our Ego-Tutor generated reasonings from our col-
lected Aria-E-CoT data and resulting reasonings. Both use
the ecot-openvla-7b-bridge base model with LoRA adapters
(rank 32) trained for 100 steps on an 80GB A100 GPU.

Setup. We generate two versions of reasoning annota-
tions for our Aria dataset: (1) Base E-CoT, using Gemini
2.5 Flash but following the original E-CoT reasoning for-
mat and prompts for generating reasonings, and (2) Our
improved Ego-Tutor CoT, using our full pipeline with ob-
ject importance classification and gaze-grounded reasoning
generation. We also ablate adding the past two frames and
reasonings to the model when generating reasonings for
fine-tuning, and find that this qualitatively improved the ac-
curacy and relevance of generated subtasks, so we included
this modification in our prompt as well. Both runs were
fine-tuned with the same hyperparameters: learning rate
0.001, batch size 8.

Results Figure 5 shows training curves for action token
accuracy; note that this is evaluated on a constrained task
where our goal was to overfit via fine-tuning as efficiently
as possible. The gaze-aware model exhibits faster initial
convergence and achieves, potentially due to our egocentri-
cally collected data aligning with the optimal intermediate
reasoning steps that a human would perform for the evalua-
tion tasks.

Qualitative Analysis We observe notable differences in
the generated reasoning chains. Baseline E-CoT produces
generic spatial descriptions, while gaze-aware reasoning ex-
plicitly references attention/the relevant object that is to be
interacted with in a given instant. The gaze-aware model
also produces more structured MOVE explanations that de-
scribe action phases (approaching, grasping, transporting)
rather than simple directional commands, improving inter-
pretability and flexibility for more complex tasks. More ex-
amples can be found here.

These results suggest that egocentrically collected hu-
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Baseline E-CoT
TASK: Take the yellow sponge and put it on the green napkin.

PLAN: Grasp the yellow sponge. Move the yellow sponge to the
green napkin.

SUBTASK REASONING: The yellow sponge is the first object
that needs to be grasped in order to complete the task.
SUBTASK: Grasp the yellow sponge.

MOVE REASONING: The yellow sponge is below the robotic
arm.

MOVE: Move down.

GRIPPER POSITION: [24, 173]

VISIBLE OBJECTS:

yellow sponge [168, 153, 187, 171]

green napkin [171, 173, 222, 227]

metal sink [85, 142, 177, 225]

// generic reasoning, gripper pos far from relevant object

// no object prioritization

Ego-Tutor (Ours)

TASK: The yellow sponge needs to be grasped and then placed
onto the green napkin.

PLAN: 1. Grasp the yellow sponge. 2. Move sponge to the green
napkin. 3. Release the yellow sponge.

GAZE POINT: [137, 150]

SUBTASK REASONING: The spoken instruction “putting it on
the green napkin” sets the goal. Gaze at [137, 150] is on the yellow
sponge, confirming it as the immediate target for grasping.
SUBTASK: Grasping the yellow sponge.

MOVE REASONING: Stopping to maintain stable pre-grasp po-
sition directly above the yellow sponge. Gaze on PRIMARY con-
firms alignment for precise grasp initiation.

MOVE: Stop. Preparing to grasp.

GRIPPER POSITION: [127, 152]

VISIBLE OBJECTS:

yellow sponge [132, 142, 142, 157] — PRIMARY

green napkin [171, 173, 222, 227] — AUXILIARY

table [77, 124, 203, 220] — AUXILIARY

Figure 4. Reasoning chain comparison for task “taking the yellow sponge and putting it on the green napkin”. Our multimodal reasoning
provides explicit gaze reasonings, spoken instruction grounding, PRIMARY/AUXILIARY object classification, and detailed move expla-

nations.

action_accuracy

Figure 5. Training curve comparing Base E-CoT (brown) vs Gaze-
Aware E-CoT (green) action token accuracy.

man data with our pipeline from Aria glasses provide mean-
ingful supervision for learning how to interact with and rea-
son given object manipulation tasks. Due to limited com-
pute resources and time restrictions, we were unable to
run additional ablations and experiments to verify the scal-
ing even further beyond our current dataset; However, our
pipeline is compatible with this logical next step, as the
aforementioned EgoDex dataset from the Apple Vision Pro
could be used in lieu of our manually collected Aria dataset
of 15 scenarios.

7. Discussion

Our work demonstrates that egocentric human data with
multimodal signals can provide meaningful supervision for

(b) Ego-Tutor (with gaze)

(a) Base E-CoT

Figure 6. Visual comparison of gaze-classified bounding box
outputs. Base E-CoT (left) produces generic spatial descriptions
while Ego-Tutor (right) incorporates gaze-guided reasonings and
object prioritization.

embodied reasoning in robotic manipulation. We discuss
key strengths, limitations, and directions for future work.
Strengths. (1) Incorporating eye gaze as an explicit at-
tention signal for reasonings provides a natural mechanism
for the phenomena of pointing” or object prioritization that
baseline E-CoT lacks[1]. Extending this to improving our
object classification scheme grounds reasoning in human at-
tention patterns, making the model’s decision process more
interpretable and aligned with how humans approach ma-
nipulation tasks. Additionally, providing the model with



context on the first reasoning of the main task as well as
the past two subtasks improves the quality and grounded-
ness of intermediate reasoning steps by mimicing short-
term causal memory of how the robot got to the state that
it is at. When it comes to our Mixed Reality aplications,
interface enables intuitive human-in-the-loop correction of
model outputs. The user study results (mean scores 3.71—
4.35/5 across categories) indicate that even users without
prior MR experience can effectively inspect and correct rea-
soning chains, creating a practical pathway for iterative pol-
icy improvement. Finally, leveraging native hand tracking
from Aria MPS yields more reliable gripper state estimates
compared to off-the-shelf detectors that struggle with ego-
centric viewpoint occlusions [4].

Limitations and Future Work. Due to the limited time
and scope of our project, there are some avenues that could
offer major improvements. First, our dataset comprises only
15 stationary tabletop scenes, limiting the diversity of tasks
and environments. Scaling data collection using larger ego-
centric datasets such as EgoDex [4] or Ego-Exo04D [3] could
improve generalization, especially when coupled with more
Aria collected data. Third, while the HoloLens application
enables real-time visualization, the current feedback loop
requires explicit user submission of corrections. An end-to-
end system that continuously learns from implicit user at-
tention during MR interaction [1] would reduce annotation
burden. Additionally, the current VLM backbone lacks spe-
cialized tokens for bounding box coordinates, potentially
limiting spatial reasoning precision; building upon a more
recent architecture e.g Pi 0.5 could improve the action accu-
racy performance and intermediate reasoning steps further.
Furthermore, while we collect data with the Aria, it would
be interesting to explore a data collection method with the
HoloLens that would allow users to edit their collected data
in real time; this should be possible due to the HoloLens
having gaze, hand, and voice/speech recognition support
much like the Aria.

Conclusion. Ego-Tutor bridges egocentric human per-
ception and robot policy learning through both context and
gaze-aware reasoning generation; our primary contribution
is coupling this pipeline with an interactive Mixed Reality
app for the Hololens that augments the data collection and
policy correction for Embodied Chain-of-Thought. Our ex-
periments show faster convergence to perfect accuracy on
limited scenarios using our Aria-collected data, and our user
studies confirm the intuitive usability of spatial and ver-
bal reasoning visualization in AR. As embodied Al systems
scale toward real-world deployment, grounding model rea-
soning in human attention and enabling intuitive correction
interfaces for on-the-fly policy correction and context in-
jection may be increasingly important for operating reliable
and trustworthy robotics in complex or dangerous environ-
ments.

References

(1]

[2

—

[3

—

(4]

(5]

[6

—_

(7]

(8

—_—

(9]

Gemini Robotics Team. Gemini robotics 1.5: Pushing the
frontier of generalist robots with advanced embodied reason-
ing, thinking, and motion transfer, 2025. 2, 5, 6

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary
Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger,
Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the
world in 3,000 hours of egocentric video. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2022. 2

Kristen Grauman et al. Ego-exo4d: Understanding skilled hu-
man activity from first-and third-person perspectives. Inter-
national Journal of Computer Vision, 2024. 2, 6

Ryan Hoque, Peide Huang, David J Yoon, Mouli Sivapu-
rapu, and Jian Zhang. Egodex: Learning dexterous manip-
ulation from large-scale egocentric video. arXiv preprint
arXiv:2505.11709, 2025. 2, 6

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao,
Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Fos-
ter, Grace Lam, Arjun Punnakkal, et al. Openvla: An open-
source vision-language-action model. In Conference on Robot
Learning, 2024. 2

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. arXiv preprint
arXiv:2303.05499, 2024. 2

Meta.  Project aria research Kit.
projectaria.com/,2024. 1,2
Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision. In International
conference on machine learning, pages 28492-28518. PMLR,
2023. 2

Michal Zawalski, William Chen, Karl Pertsch, Oier Mees,
Chelsea Finn, and Sergey Levine. Embodied chain-of-thought
reasoning for vision-language-action models. In Conference
on Robot Learning, 2024. 1,2

https:// www.


https://www.projectaria.com/
https://www.projectaria.com/

	Introduction
	Related Work
	Data Collection
	Methodology
	Mixed Reality Application
	HoloLens
	User Study

	Experiments
	Discussion

