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1 Introduction

Topographic maps are a canonical feature of sensory systems, preserving the spatial relationships of stimuli
across neural projections. These maps emerge early in development, even before sensory experience,
suggesting internal activity-dependent mechanisms. This isn’t to say that there is no input to these
neural circuits responsible for computation of sensory information; rather, similar to the Chomskyan and
biolinguistic concept of the human faculty for language, this process can be interpreted as developing a
structured base framework for vision that enables us to acquire vision more efficiently when we eventually
see the external world. Retinal waves, spontaneous bursts of activity sweeping across the retina, are known
to guide retinotopic organization via Hebbian plasticity before vision is functional [1, 2].

Theoretical work has shown that Hebbian learning, together with local excitation and global inhibition,
can drive the emergence of spatially ordered maps through competitive self-organization [3]. Winner-
take-all (WTA) networks operate on this fundamental principle: populations compete through shared
inhibitory circuits, with the most strongly driven unit suppressing its neighbors, allowing the network to
sharpen input representations and enforce exclusivity [4]. Our group selected this specific project due to
our interest in biological learning; we were motivated by the desire to build an on-chip demonstration of
developmental mechanisms like synaptogenesis and pruning, guided solely by unsupervised local activity.

Towards this goal, we implemented a biologically inspired Hebbian learning process — featuring
separate growth and pruning phases — on a soft WTA architecture running on the Dynap-SE. Our aim
was to evaluate whether such a system can form topographic maps and exhibit selective responses to
input structure.

2 Methods

2.1 Tuning Neurons on Dynap-SE

The silicon neurons on the Dynap-SE operate in the sub-threshold regime and thus are subject to
significant process variation and are sensitive to variables such as temperature and supply voltage. Before
investigating learning in Winner-Take-All networks, we aimed to ensure that we were obtaining a neuronal
response that roughly matches biological constraints with regards to time constants.

Specifically, by using an oscilloscope and modifying the DC current parameter in short pulses and
observing a single neuron from the chip, we tuned the refractory period constant until we observed a
refractory period of approximately 5 ms. Furthermore, observing the decay from our neuron, we tuned the
membrane time constant (τmembrane) to result in a fall-time between 10–20 ms. Our final TAU1 = (5, 200),
deviated from the default (7, 200) that we inherited from previous Winner-Take-All network projects.
The magnitude of the DCP parameter was selected such that the neural activity would be characteristic
of a neuron receiving a subthreshold current when fitting with the decay, and above threshold to induce
high spiking for the refractory period analysis.

2.2 Winner-Take-All Architecture

We implemented a soft winner-take-all (WTA) network as the output layer, comprising 16 excitatory
populations, each consisting of 8 neurons, and a single global inhibitory population composed of 20
neurons. Each excitatory population is connected with AMPA synapses in a recurrent fashion and
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to its immediate neighboring populations. The first and last population are also connected to each
other. All excitatory populations project to the global inhibitory population, which in turn provide
uniform inhibitory feedback to all excitatory populations (Figure 1). The excitatory populations are
connected to the inputs using 2 to 4 connections (randomly chosen). Small note: Because of the hardware
limiting us to 64 inputs per neuron, we implemented a ”half-all-to-all” network, where each even input is
connected to each even WTA population and each odd input is connected to each odd WTA population.
We chose this architecture for two principal reasons. First, the local excitatory connectivity enables
the propagation of spatial proximity information across adjacent units, a process crucial for the self-
organization of topographic maps [3]. Second, the global inhibition imposes a competitive dynamic that
effectively suppresses spurious or diffuse activity, an essential mechanism during the early phases of
learning when connectivity is still random and unrefined.
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Figure 1: Winner-Take-All Network. A schematic representation of the network is reported with
4 populations instead of the actual 16, showing local and recurrent connectivity between excitatory
populations and one-to-one connectivity between excitatory and inhibitory populations.

2.3 Traveling Wave Input to the Network

For the input layer, we considered an array of 16 spike generators in order to match the dimensionality
of the output layer. The two layers are connected via a connectivity matrix indicating the number of
parallel connections (AMPA synapses) between each spike generator and excitatory population in the
WTA. Spike generators are sending Poisson trains of activity to the WTA layer. We defined a Gaussian
spatial profile of activation, so the spike generator corresponding to the peak of the Gaussian will have
maximum firing rate of 100 Hz. Thus, the firing rate ri of each input neuron i was computed as:

ri = A · exp
(
− (xi − µ(t))2

2σ2

)
where A is the peak rate (e.g., 100 Hz), xi is the neuron’s position index, µ(t) is a time-dependent center
that drifts across the input layer, and σ is the width controlling spread. To emulate the correlated activity
waves observed in the retina, we imposed drift dynamics on the Gaussian input, thus having it travel
across spike generators (Figure 2).

2.4 Hebbian Learning with Growth and Pruning Phases

We finally implemented a learning algorithm with the computer in the loop. Following the theoretical
results [3], we chose an unsupervised rate-based Hebbian learning. Instead of imposing a global normalization
procedure at each iteration we modified the classic Hebbian learning by distinguishing two different phases.
A growth phase, emulating synaptogenesis, where the number of connections between the two layers just
increases based on the correlation between the activities followed by a pruning phase, emulating synaptic
pruning, where spurious connections are eliminated in the absence of correlation. During the growing
phase, the number of connections increases by 2 if the product of the normalized input and output is
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Figure 2: Input Layer Connectivity. The lower dots represent spike generators connected to the
excitatory populations. Spike generators are activated according to a wave-like dynamics with a traveling
Gaussian activation shape.

above 0.85. During the pruning phase, the number of connections decreases by 1 if the product of the
normalized input and output is below 0.5.
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Figure 3: Learning Topographic Maps. A schematic representation of the full pipeline. On the left
the network with traveling wave inputs with initial random connectivity. On the right the network after
learning with strengthened topographic connectivity.

2.5 WTA Discriminative Properties

We tested the WTA network across two axes of variation: input amplitude, a and position, µ. In each
trial, two Gaussian bumps were used as input Figures 4 and 5 summarize network responses in a series of
experiments exploring different input amplitudes and spatial separations (a and µ, respectively, for each
bump).
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Figure 4: Amplitude Sweep. Representative firing rates for varying a2, amplitude of the second bump,
given a fixed a1 = 100.

Figure 5: Spatial Separation Sweep. Spatial input separations affect the network’s discriminative
performance as we vary µ1, µ2 from (0.4, 0.5) → (0.1, 0.9) Note that since the first and last excitatory
populations share lateral connectivity, this circular structure causes spatially adjacent inputs near the
boundaries to interact as if they were neighboring in the center.

2.6 Learning Topographic Maps

We trained the network using the Hebbian-like learning rule described above by performing 3 growing
phases followed by 3 pruning phases and recorded the number of connections between the input and
the WTA populations as a connection matrix, as shown in Figure 6. We recorded the learning process
and compiled a video showing the evolution of the connection matrix, available at this URL. As can be
seen in the video, a diagonal of strong connections emerges in the connection matrix, which corresponds
to the 1-to-1 connections between the input and the WTA populations. It can also be seen that some
connections outside of the 1-to-1 diagonal are strengthened, especially for WTA populations 8 and 9.

3 Discussion

Our results demonstrate that Hebbian learning with distinct growth and pruning phases can produce
coherent topographic mappings in a soft WTA network. After sufficient training, a clear one-to-one
alignment emerges between input and output units, with almost all of theWTA excitatory clusters/populations
specializing for specific spatial input positions. This supports earlier computational models by Willshaw
and von der Malsburg that proposed competition plus correlation suffices for map formation [3].

However, one key observation is that some inherent variability was present in our silicon neurons. Some
populations, notably 8 and 9, formed disproportionately strong connections across many input positions.
These “columns” in the connection matrix likely reflect hyperexcitable neurons that dominated due to
slightly lower leak or higher bias currents. [5].

Furthermore, despite successful learning of the desired mapping, our network struggled with competitive
discrimination. In experiments with two spatially distinct Gaussian inputs, the weaker bump was not
reliably suppressed. Ideally, a winner-take-all network should attenuate less dominant inputs. Here,
however, both bumps were preserved in output activity, sometimes with the weaker input having higher
gain. This suggests that the network acts more as a soft selector than a strict WTA, blurring input
distinctions.

We hypothesized that increasing inhibitory strength might sharpen discrimination. However, increasing
the connectivity of excitatory-to-inhibitory (ei) links in the network yielded no noticeable improvement
in ameliorating the issues with discrimination between two bumps in certain configurations, namely those
with a small difference in amplitude or position . Thus we currently believe that issues with discrimination
may stem from broader connectivity interactions, or potentially from mismatched excitatory loop strengths.
It is also possible that additional tuning of lateral inhibition or other connectivity may be adequate for
sharper selectivity.

Future directions include scaling to 2D structures, which would be a better model of our biological
inspiration, integrating STDP to account for pre-post differences in spikes, and leveraging more advanced
neuromorphic platforms such as Dynap-SE2 to explore the potential for leveraging dendritic computation
to enhance our learning strategy.
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Figure 6: Hebbian Learning. A strong diagonal, representing the desired 1-to-1 topographic map
emerges during Hebbian learning. Link to video.

4 Conclusion

We demonstrated that our biologically inspired Hebbian learning rule can, in a process incorporating
distinct growth and pruning phases, lead to the learning of a self-organized topographic map in a soft
WTA network. This was achieved on neuromorphic hardware (Dynap-SE) using structured input patterns
that mimic developmental retinal waves. The result is a one-to-one alignment between input and output
populations, consistent with our hypothesis and original goal.

However, while the network effectively learned spatial mapping, it failed to robustly suppress weaker
competing inputs, highlighting a gap in our soft WTA network’s behavior. We believe that if altering
the excitatory-inhibitory population connectivity parameters is not sufficient to resolve this limitation,
perhaps instead future attempts to combine the topographic learning with a better soft WTA could
incorporate more adaptive lateral or inhibitory plasticity to enforce true winner selection.

Overall, this work contributes a concrete demonstration of structural self-organization on analog
hardware. It lies at the intersection of systems neuroscience and neuromorphic computing, and opens
the door to future extensions that incorporate spike timing, different spatial structures, and other forms
of adaptation and learning.
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