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Abstract

Action recognition in dynamic and real-world environ-
ments remains a challenging task due to occlusions, com-
plex scenes, and interactions among multiple objects. This
work proposes a novel action recognition pipeline that
leverages dynamic scene graphs and Temporal Graph Neu-
ral Networks (TGNNs) to model both spatial and tempo-
ral relationships in egocentric and exocentric video data.
The approach begins by employing zero-shot segmentation
and vision-language models (VLMs) to construct dynamic
scene graphs that capture semantic and structural context
across frames. These graphs serve as input to a TGNN,
which learns to represent and reason over temporal inter-
actions between entities. By integrating rich visual seman-
tics with graph-based temporal modeling, our method aims
to enhance robustness and generalization in action recogni-
tion tasks without requiring extensive manual annotations.

1. Introduction
Understanding human activities in dynamic, real-world en-
vironments is a central goal of computer vision, especially
in egocentric and exocentric video analysis. Egocentric
videos, in particular, offer a unique first-person perspective
on how individuals interact with objects and their surround-
ings over long temporal spans. However, they can be very
complex, with scenes characterized by occlusions, multi-
object interactions, and temporal de-coherence, all of which
pose significant challenges for traditional action recognition
methods. [3]

Recent advancements in vision-language models
(VLMs) and segmentation techniques have greatly
improved our ability to extract semantically rich represen-
tations from visual data without requiring extensive manual
annotation or a closed vocabulary. In parallel, graph-based
representations have shown promise for memory-efficient

modeling structured relationships between entities in a
scene; however, they are often limited to short-range
interactions and static snapshots. [7]

In this work, we propose a novel action recognition
pipeline that leverages dynamic scene graphs and Tempo-
ral Graph Neural Networks (TGNNs) to model both spa-
tial and temporal relationships across video sequences. Our
approach constructs dynamic scene graphs using zero-shot
segmentation, hand detection, and VLM object annotation,
capturing entities and their interactions evolving over time.
These graphs are then used to train a Temporal Graph Neu-
ral Network, enabling the system to learn representations
over sequences of actions and interactions, which allows it
to classify an arbitrary segment of a video with an action
label consisting of a verb and a noun appropriate for the
dataset under consideration; however, this action can also
optionally be derived from an open verb/noun vocabulary.

By representing the structure and evolution of scenes as
graphs, our method provides a long-term relational under-
standing of human activities. In doing so, our work con-
tributes towards closing the gap between low-level visual
data and high-level semantic understanding in dynamic,
real-world environments, and could potentially improve
current techniques used in robotics, planning, and percep-
tion.

1.1. Related Work

A recent line of work by [5] introduces EgoVideo, a
model that enhances egocentric video representation learn-
ing by explicitly modeling fine-grained hand-object dy-
namics. Recognizing that existing video-language pre-
training methods often neglect detailed physical interac-
tions, they propose HOD, a data generation pipeline that
combines hand-object detection with large language mod-
els to create rich motion-aware narrations. Their dual-
branch ViT-based architecture includes a novel lightweight
motion adapter designed to capture temporal cues at high
frame rates. Through co-training on HOD data, EgoVideo
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achieves state-of-the-art performance on multiple egocen-
tric tasks. While our approach similarly focuses on dynamic
scene understanding, we aim to build more interpretable
models of the higher-level hand-object relations with dy-
namic scene graphs, and then perform the classification us-
ing trained Temporal Graph Neural Networks. Nonetheless,
the success of these E2E methods such as EgoVideo and [9]
indicates the value of structured motion-aware representa-
tions for egocentric video understanding.

Recent efforts in egocentric video understanding have
begun emphasizing hand-object interactions as key cues
for activity recognition and representation learning. While
prior work often treated hands and objects as separate se-
mantic entities or used hand masks as auxiliary inputs,
these approaches typically failed to capture the nuanced,
contact-based relationships critical to egocentric interac-
tion. Addressing this, CaRe-Ego [10] introduces a contact-
aware segmentation framework for the EgoIHOS task, ex-
plicitly modeling both hand-object and object-object rela-
tionships. The proposed Hand-guided Object Feature En-
hancer (HOFE) leverages hand features to enhance object
representations through cross-attention, while the Contact-
centric Object Decoupling Strategy (CODS) disentangles
overlapping object classes (e.g., two-hand objects) by fo-
cusing on interaction patterns instead of rigid classification.
This dual-focus on interaction and contact not only reduces
semantic ambiguity but also improves segmentation gen-
eralization across domains. There have also been exten-
sions to state-of-the-art video understanding approaches us-
ing TGNNs, for instance TESGNN [6], which uses equi-
variance constraints on the graph for robust scene under-
standing. Finally, the foundation of our investigation relied
on two datasets: EPIC Kitchens-100 [11] and Ego-Exo4d
[3], both of which contain egocentric video segments with
labels corresponding to common tasks in the kitchen and
household.

2. Methodology

2.1. Overview

We propose an approach that effectively combines several
state-of-the-art models for segmentation, point tracking,
hand-object interactions, etc. We begin by decomposing
video frames into their constituent objects using the Seg-
ment Anything Model (SAM) [8]. Due to storage capacity
and computational (GPU) constraints, we restrict ourselves
to operating on Egocentric video from the Epic-Kitchens
dataset, which simplifies our person-object relation detec-
tion method, since we can specifically focus on identifying
hands as the primary agents of action using a dedicated
detector. Knowing what both hands are interacting with is a
strong foundation for human action recognition, especially
in an egocentric setting. However, our approach should

theoretically be easily extendable to the Ego4D egocentric
data; all the required additional pre-processing in the
form of undistorting the recording using camera intrinsics
has been integrated into our pipeline and is functional
albeit computationally expensive to run on a minimally
viable subset of data. However, for exocentric data, a
more extensible body-part detection system (skeletal/pose
estimation) would be necessary to support actions not com-
monly performed using hands, such as kicking a soccer ball.

One of the strengths of our methods arises from our rep-
resentation of a scene, which we construct by taking seg-
mented objects and detected right/left hands, then lever-
aging the open-vocabulary world knowledge of a Vision
Language Model (VLM) to descriptively label relations be-
tween objects and any visible hands in the frame. Two
objects relating to one another (e.g., “right hand holding
knife”), would be encoded as a semantic edge in our graph.
Simultaneously, we capture the scene’s temporal dynamics
using a tracking model (CoTracker [4]) to follow objects
across frames, establishing the temporal links that define
the action’s progression. Thus, after constructing our struc-
tured graph, we have encoded both “what” is happening and
“how/when” it evolves; finally, these dynamic scene graphs
are then used to train a Temporal Graph Neural Network
(TGN) for robust and context-aware action classification.

We define the task in Sec. 2.2, followed by our
three-stage pipeline: (1) Per-Frame Scene Pre-processing
(Sec. 2.4), (2) Dynamic Scene Graph Construction
(Sec. 2.5), and (3) Temporal Graph-based Action Classi-
fication (Sec. 2.6). Training and inference are detailed in
Sec. 3.

2.2. Task Formulation

Our goal is to classify actions in untrimmed egocentric
videos. Each input is a video segment with metadata (e.g.,
participant ID, narration ID), and the output is an action la-
bel (verb + noun, e.g., ”take bottle”). We construct a
dynamic scene graph representing object interactions over
time, then classify actions using a Temporal Graph Neural
Network (TGNN).

2.3. Pipeline Overview

Figure 1 shows the three-stage pipeline:

1. Per-Frame Scene Pre-processing (Offline)
Processes each video frame using SAM2 to extract in-
stance masks. Saves in HDF5 for efficiency.

2. Dynamic Scene Graph Construction
Detects hands and interacting objects; tracks object in-
stances using CoTracker; uses an LLM-based descriptor
for semantic labels and relationships. Outputs a struc-
tured JSON scene graph.
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3. Temporal Graph-based Action Classification
Uses CLIP to embed node labels. A heterogeneous GNN
with spatial and temporal edges predicts the action label.

2.4. Stage 1: Per-Frame Scene Pre-processing

2.4.1 Instance Segmentation (SAM2)

• Extract frames (e.g., every 8th) to reduce redundancy.
• Use SAM2 to segment all objects; store binary masks in

HDF5.

2.4.2 Hand and Interaction Detection

• Use hands23 or mediapipe to detect hands and ob-
jects they interact with.

• Filter SAM2 masks to retain only interacting objects (via
overlap or direct output).

• Draw red ellipses for VLM-based labeling.

2.5. Stage 2: Dynamic Scene Graph Construction

2.5.1 Initialization (First Frame)

• Create Object nodes from masks.
• Use an VLM descriptor for semantic labels and relations

between hands/objects
• Create Hand nodes and relational edges.
• Sample N points per mask for tracking.

2.5.2 Temporal Linking (CoTracker)

• Track points across frames: (t, x, y).
• CoTracker predicts new locations and visibility scores.

2.5.3 Graph Updating

• Match tracked points to new masks:
– Match: Update node.
– No Match: Create new node, label via LLM, sample

points.
– Object Lost: Mark node as invisible.

• Final graph (nodes, edges, labels, timestamps) saved as
JSON.

2.6. Stage 3: Temporal Graph-based Action Classi-
fication

2.6.1 Model Architecture

• Node Embedding: Use CLIP (512D) to encode LLM-
generated labels.

• Heterogeneous GNN:
– GATConv for spatial edges (object-object).
– TransformerConv for temporal edges (same object

across frames).
• Pooling and Classification: Mean-pool node features →

2-layer MLP → action logits.

Algorithm 1 Dynamic Scene Graph Construction

1: Input: Video V , Hand Detector DH , LLM DLLM,
Tracker Tp

2: Output: Scene Graph G
3: Init G
4: for each chunk in V do
5: Extract frame F
6: Detect hands and interacting objects
7: Filter masks {Mj} from SAM2
8: Predict point locations {p′i} via Tp

9: Match p′i → Mj

10: for each match (Oi,Mj) do
11: Update Oi with Mj

12: end for
13: for each unmatched Mk do
14: Create node Ok, label via DLLM
15: Add edges, sample points, update Tp

16: end for
17: for unmatched objects do
18: Mark as invisible if obj unmatched for ≥

frame unmatched limit
19: end for
20: end for
21: return G

3. Experiments
3.1. Datasets

We use the Epic Kitchens[2] dataset for our experiments.
Specifically, we use an open sourced version of the dataset
provided in [12] where the videos are cut into 15 second
long chunks and are resized to a smaller size.

Preprocessing First, we extract the 10 most frequently
occurring noun and verb classes from the dataset, and fil-
ter actions based on these classes.

Dataset size The training set consisted of 836 randomly
sampled segments, and the validation set consisted of 200
segments.

3.2. Metric

In order to evaluate our method’s performance on action de-
tection/recognition tasks featured as workshop challenges
for CVPR 2025, we implemented the mean Average Pre-
cision metric, following the EK100 Action Detection chal-
lenge [11]. We also used the baseline metrics provided in
the EK100 Action Recognition challenge, which were top
acc. @ 1, top acc. @ 5, for actions, verbs, & nouns.

Let (C) be the set of all classes. First, for each class, the
temporal intersection over union is calculated as follows:
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Figure 1. Three-stage pipeline: frame extraction, dynamic scene graph construction, and TGNN-based action classification.

tIoU(Sp, Sgt) =
|Sp∩Sgt|
|Sp∪Sgt| , where Sp - predicted segment,

Sgt - ground truth segment. Based on that, we classify the
predictions either as True Positive (highest-scoring predic-
tion matched to an unassigned ground truth segment with
tIoU≥ threshold) - or False Positive (otherwise).
We compute precision and recall for all sorted predictions.
Next, the interpolated average precision (APc) for class c is
calculated: APc =

∑
k(rk − rk−1)pinterp(rk), where p(r)

is the precision as a function of recall, and pinterp(r) =
maxr′≥r p(r

′). The mAP is then defined as the mean of
the AP scores calculated across all action classes and all
thresholds: mAP = 1

|C||T |
∑

c∈C

∑
t∈T APc(t), where C -

set of all classes, T - set of all thresholds.

(a) hands23 w/ output (b) mediapipe

Figure 2. Hand detector comparison.

3.3. Hand/Object Detection and Scene Graphs

Parameter Finetuning We tested out different hyperpa-
rameter values, and, after an analysis of the results, we de-

(a) hands23 + output (b) mediapipe

Figure 3. Scene graph comparison.

cided to make the following parameter changes:
• segmentation: decrease min px from 500 to 200,
• mediapipe: decrease radius around hands from

70 to 50, decrease landmarks th from 0.3 to 0.15
• chatgpt: change the model from gpt-4o to gpt-4.1,

increase the temperature from 0 to 0.5, change
top p from 0.2 to default.

We also added and specified the config parameters for
hands23.

VLM Comparison We performed scene graph labeling
both using GPT and Claude. We then visually compared
the resulting graphs and concluded that GPT provides better
results.

Prompt Engineering We also crafted and tested a set of
VLM prompts, visually compared the VLM outputs, and se-
lected the prompt achieving the best results, which we then
used for further evaluations. Initially, the prompt that our
inherited pipeline had out-of-the-box yielded limitations in
the form of highly repetitive verb labels: for instance, the
VLM would often exclusively use the terms “grasping” or
“holding” to label any hand-object interaction.
We first tuned temperature, topp, and then modified the
prompt with a richer context in regards to descriptive verbs
and nouns, ensuring that we weren’t explicitly giving away
any important tips or instilling any biases (e.g telling the
VLM that it is only to use certain words for kitchen activ-
ities). Furthermore, we added an additional image to the
prompt: a frame with all points that were being tracked
highlighted, which gave the model a bit of extra specificity
when choosing which noun to focus on for relation annota-
tions. Finally, we noticed that the VLM was limited by only
being able to return one annotation per rame, so we changed
the prompt to elicit a ranked (and confidence-scored) list of
the most probable hand-object interactions in a given frame,
which also improved our qualitative results once we estab-
lished heuristics for selecting or discarding annotations.

Hand Detector Comparison We also performed a vi-
sual comparison of the scene graphs achieved using both
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(a) mAP metric score in relation to the number of epochs. (b) Noun confusion matrix for the best performing noun-accuracy-
wise method - hands23.

Figure 4. TGNN training results on the validation dataset.

hand detectors and unanimously decided that hands23
performs better in this qualitative analysis. Sample com-
parison can be found in Figures 2 and 3. We can clearly see
that hands23 manages to correctly detect both hands and
interacting objects, while mediapipe output is limited to
the left hand only.

We also evaluated the number of graphs created based on
outputs of each of the detectors - the results can be found in
Table 3. Again, hands23 performs significantly better, as
its detections result in our pipeline creating up to 50% more
graphs compared to mediapipe.

3.4. Action Recognition

We have evaluated and compared two hand detectors:
mediapipe and hands23 on the EK100 dataset. How-
ever, the hands23 detector offers additional information
that we did not use in our initial experiment, so we per-
formed an extension to our work. As hands23’s method
outputs a JSON dictionary that has specific information
about each hand’s contact state and grasp type, we were thus
able to augment the VLM’s context with highly-accurate in-
formation about the hand contact states and type of grasp.
This auxiliary information helped steer the actions that the
VLM would predict to a better subspace, especially when it
came to verbs.
An example of this would be using the grasp classification
of the Power-Circular or Prismatic [1] to classify something
as “holding” or even “cutting” instead of “touching”. We
compared the resulting scene graphs from all three methods
as well as presented the results on the training and valida-
tion sets (800/200 samples from EK-100) in Table 2. We
can observe that mediapipe is probably overfitting, as
it performs best out of the three methods on the training
dataset, and worst on the validation dataset. This is most
likely due to the fact that it is trained on only 425 scene

graphs, compared to 637 or 675 scene graphs on which
hands23 is trained, thus certain noun/verb combinations
are more likely to fall on the tail of the learned distribution
for classification.

Figure 4 presents training results of our method on the
validation dataset. We can clearly see that mAP score
plateaus around epoch 80. Furthermore, the noun confu-
sion matrix looks reasonably well, with only a couple of
frequent mismatches - such as sponge and tap, which are
an understandable mistake that may stem from the fact that
these objects often occlude or occur next to each other in
egocentric video, especially in the kitchen-domain.

Method Acc@1 Acc@5 V. Acc. N. Acc

mediapipe [T] 0.875 1.000 0.903 0.894
hands23 [T] 0.781 0.996 0.828 0.856
hands23 + o [T] 0.761 0.998 0.808 0.852

mediapipe [V] 0.362 0.550 0.475 0.512
hands23 [V] 0.408 0.664 0.464 0.536
hands23 + o [V] 0.382 0.687 0.481 0.511

Table 1. Results on the training [T] and validation [V] sets for
mediapipe, hands23 and hands23 with its output passed to
the LLM. mAP is the mean average precision as in Subsec. 3.2,
Acc@1 and Acc@5 are top-1 and top-5 accuracies respectively,
V. Acc. is the verb accuracy (accuracy calculated when focusing
only on the verb part of the label), and N. Acc is the noun accuracy
(accuracy calculated when focusing only on the noun part of the
label).

4. Contributions
Domain contributions We proposed a novel pipeline
for action recognition that leverages scene graphs and
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Approach mAP

mediapipe 0.293
hands23 0.310
hands23 + o 0.305
benchmark* 0.3197

Table 2. Results of our method compared to EK100 Action Detec-
tion challenge winners.
*Due to storage and compute limitations, our method was trained
and evaluated on a significantly smaller subset of EK100 (0.8/0.2
split on 1000 samples from the full-sized ∼77,000 sample dataset)
as compared to SOTA methods from the CVPR 2025 challenge.

Hand Detector Graphs Created

mediapipe 425
hands23 637
hands23 + o 675

Table 3. Comparison of the three object detectors in terms of how
many frames did the hand detector construct a scene graph. All
hand detectors were run on the same dataset.

Temporal Graph Neural Networks (TGNNs). As part
of this pipeline, we enriched the vision-language model
(VLM) scene labeling prompt using grasp information
extracted from the Hands23 output, leading to a notable
improvement in verb prediction accuracy. To the best of
our knowledge, such integration of TGNNs and scene
graph-based reasoning has not been extensively explored in
the literature of our domain.

4.1. Work distribution

Anna Contributed to automating the EPIC-Kitchens
pipeline. Improved scene graph labeling via prompt engi-
neering and performed the VLM comparison. Integrated
the mAP metric into the pipeline.

Debmalya Helped to tune parameters in the pipeline, and
automate the EK100 data preprocessing, and fixing bugs in
the Ego4D pipeline. Helped run experiments and optimiz-
ing the segmentation code for EK100 pipeline.

Malek Contributed to parameter tuning for segmenta-
tion/object tracking. Automated Ego4D pipeline, assisted
with EK100 data-preprocessing and evaluated small subset
of EgoExo4D for viability. Ran experiments and surveyed
prior work for potential inspiration. Contributed to prompt
engineering and Hands23 grasp-aware integration.

Sushant Contributed to data preprocessing and prepared
the action recognition pipeline for the EPIC-Kitchens
dataset. Additionally, integrated the Hands23 model into
the pipeline to enhance grasp-aware scene understanding.

4.2. Code Contributions

The initial code for the pipeline was provided by our su-
pervisors (GitHub Link). Code contributions include re-
writing the pipeline to use a variable/scalable amount of
data from the EPIC Kitchens dataset and tuning the con-
fig parameters in the original pipeline. We also integrate the
hands23 detection model into the pipeline by adapting the
code provided (GitHub Link). We also add the mAP metric
in the training script to evaluate the models. Our final code
can be found here (GitHub Link) which is also included in
the submission.

5. Conclusion
Motivated by the sizable scope and richness of Egocentric
and Exocentric data, we explored recent datasets such
as EgoExo4D, as well as older benchmarks in the field
that remain formidable (the EK-100 CVPR 2025 Action
Recognition & Detection challenges). While we were
limited by computational constraints that made working
with the large files from Meta’s Aria glasses difficult, we
were still able to reach competitive performance on a subset
of the EK-100 dataset.

Fundamentally, our approach stands out from many
modern attempts to recognize actions from video, most im-
portantly due to the interpretable and efficient graph repre-
sentation that we exploit in this work. By encoding both
spatial and temporal relations into dynamic scene graphs,
we were able to effectively train our classifier to exploit
these representations for the downstream tasks we chose to
explore. Furthermore, we benchmarked on various sample
sizes as we worked our way up to ≈ 1000 videos, and no-
ticed a consistent trend where training accuracy decreased
and validation accuracy increased as we added more data.
Thus, we hypothesize that our approach would continue
to scale without any collapse, especially when trained on
all available data from EK-100. Improving the Temporal
Graph Network and the EgoExo4D segmentation and pro-
cessing pipeline seem to be promising avenues for future
improvement in this domain.
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